1. DaemonSet
1.1 DaemonSet 作用
DaemonSet 的主要作用,是让你在 Kubernetes 集群里,运行一个 Daemon Pod。 所以,这个 Pod 有如下三个特征:
- 这个 Pod 运行在 Kubernetes 集群里的每一个节点(Node)上;
- 每个节点上只有一个这样的 Pod 实例;
- 当有新的节点加入 Kubernetes 集群后,该 Pod 会自动地在新节点上被创建出来;而当旧节点被删除后,它上面的 Pod 也相应地会被回收掉。
跟其他编排对象不一样,DaemonSet 开始运行的时机,很多时候比整个 Kubernetes 集群出现的时机都要早。
1.2 DaemonSet API 对象定义
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd-elasticsearch
namespace: kube-system
labels:
k8s-app: fluentd-logging
spec:
selector:
matchLabels:
name: fluentd-elasticsearch
template:
metadata:
labels:
name: fluentd-elasticsearch
spec:
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
containers:
- name: fluentd-elasticsearch
image: k8s.gcr.io/fluentd-elasticsearch:1.20
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
|
1.3 DaemonSet 实现
DaemonSet Controller,首先从 Etcd 里获取所有的 Node 列表,然后遍历所有的 Node。这时,它就可以很容易地去检查,当前这个 Node 上是不是有一个携带了 name=fluentd-elasticsearch 标签的 Pod 在运行。
而检查的结果,可能有这么三种情况:
- 没有这种 Pod,那么就意味着要在这个 Node 上创建这样一个 Pod;
- 有这种 Pod,但是数量大于 1,那就说明要把多余的 Pod 从这个 Node 上删除掉;
- 正好只有一个这种 Pod,那说明这个节点是正常的。
但是,如何在指定的 Node 上创建新 Pod 呢?用 nodeSelector,选择 Node 的名字即可。
1
2
3
|
nodeSelector:
name: <Node名字>
|
不过,在 Kubernetes 项目里,nodeSelector 其实已经是一个将要被废弃的字段了。因为,现在有了一个新的、功能更完善的字段可以代替它,即:nodeAffinity。我来举个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
apiVersion: v1
kind: Pod
metadata:
name: with-node-affinity
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: metadata.name
operator: In
values:
- node-geektime
|
在这个 Pod 里声明了一个 spec.affinity 字段,然后定义了一个 nodeAffinity。其中,spec.affinity 字段,是 Pod 里跟调度相关的一个字段。这里nodeAffinity 的含义是:
- requiredDuringSchedulingIgnoredDuringExecution:它的意思是说,这个 nodeAffinity 必须在每次调度的时候予以考虑。同时,这也意味着你可以设置在某些情况下不考虑这个 nodeAffinity;
- 这个 Pod,将来只允许运行在“metadata.name”是“node-geektime”的节点上。
所以,我们的 DaemonSet Controller 会在创建 Pod 的时候,自动在这个 Pod 的 API 对象里,加上这样一个 nodeAffinity 定义。其中,需要绑定的节点名字,正是当前正在遍历的这个 Node。
当然,DaemonSet 并不需要修改用户提交的 YAML 文件里的 Pod 模板,而是在向 Kubernetes 发起请求之前,直接修改根据模板生成的 Pod 对象。
此外,DaemonSet 还会给这个 Pod 自动加上另外一个与调度相关的字段,叫作 tolerations。这个字段意味着这个 Pod,会“容忍”(Toleration)某些 Node 的“污点”(Taint)。而 DaemonSet 自动加上的 tolerations 字段,格式如下所示:
1
2
3
4
5
6
7
8
9
10
|
apiVersion: v1
kind: Pod
metadata:
name: with-toleration
spec:
tolerations:
- key: node.kubernetes.io/unschedulable
operator: Exists
effect: NoSchedule
|
这个 Toleration 的含义是:“容忍”所有被标记为 unschedulable“污点”的 Node;“容忍”的效果是允许调度。
DaemonSet 的“过人之处”,其实就是依靠 Toleration 实现的。假如当前 DaemonSet 管理的,是一个网络插件的 Agent Pod,那么你就必须在这个 DaemonSet 的 YAML 文件里,给它的 Pod 模板加上一个能够“容忍”node.kubernetes.io/network-unavailable“污点”的 Toleration。正如下面这个例子所示:
1
2
3
4
5
6
7
8
9
10
11
|
...
template:
metadata:
labels:
name: network-plugin-agent
spec:
tolerations:
- key: node.kubernetes.io/network-unavailable
operator: Exists
effect: NoSchedule
|
在 Kubernetes 项目中,当一个节点的网络插件尚未安装时,这个节点就会被自动加上名为node.kubernetes.io/network-unavailable的“污点”。而通过这样一个 Toleration,调度器在调度这个 Pod 的时候,就会忽略当前节点上的“污点”,从而成功地将网络插件的 Agent 组件调度到这台机器上启动起来。这种机制,正是我们在部署 Kubernetes 集群的时候,能够先部署 Kubernetes 本身、再部署网络插件的根本原因:因为当时我们所创建的 Weave 的 YAML,实际上就是一个 DaemonSet。
1.4 DaemonSet 滚动升级
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
$ kubectl create -f fluentd-elasticsearch.yaml
$ kubectl get pod -n kube-system -l name=fluentd-elasticsearch
NAME READY STATUS RESTARTS AGE
fluentd-elasticsearch-dqfv9 1/1 Running 0 53m
fluentd-elasticsearch-pf9z5 1/1 Running 0 53m
$ kubectl get ds -n kube-system fluentd-elasticsearch
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
fluentd-elasticsearch 2 2 2 2 2 <none> 1h
# DaemonSet 可以像 Deployment 那样,进行版本管理
# 第一个 fluentd-elasticsearch 是 DaemonSet 的名字,第二个 fluentd-elasticsearch 是容器的名字
$ kubectl set image ds/fluentd-elasticsearch fluentd-elasticsearch=k8s.gcr.io/fluentd-elasticsearch:v2.2.0 --record -n=kube-system
# 较长的 API 对象都有短名字,比如 DaemonSet 对应的是 ds,Deployment 对应的是 deploy。
$ kubectl rollout status ds/fluentd-elasticsearch -n kube-system
Waiting for daemon set "fluentd-elasticsearch" rollout to finish: 0 out of 2 new pods have been updated...
Waiting for daemon set "fluentd-elasticsearch" rollout to finish: 0 out of 2 new pods have been updated...
Waiting for daemon set "fluentd-elasticsearch" rollout to finish: 1 of 2 updated pods are available...
daemon set "fluentd-elasticsearch" successfully rolled out
$ kubectl rollout history daemonset fluentd-elasticsearch -n kube-system
daemonsets "fluentd-elasticsearch"
REVISION CHANGE-CAUSE
1 <none>
2 kubectl set image ds/fluentd-elasticsearch fluentd-elasticsearch=k8s.gcr.io/fluentd-elasticsearch:v2.2.0 --namespace=kube-system --record=true
|
有了版本号,你也就可以像 Deployment 一样,将 DaemonSet 回滚到某个指定的历史版本了。Deployment 管理这些版本,靠的是“一个版本对应一个 ReplicaSet 对象”。可是,DaemonSet 控制器操作的直接就是 Pod,不可能有 ReplicaSet 这样的对象参与其中。那么,它的这些版本又是如何维护的呢?所谓,一切皆对象!
在 Kubernetes 项目中,任何你觉得需要记录下来的状态,都可以被用 API 对象的方式实现。当然,“版本”也不例外。Kubernetes v1.7 之后添加了一个 API 对象,名叫 ControllerRevision,专门用来记录某种 Controller 对象的版本。比如,你可以通过如下命令查看 fluentd-elasticsearch 对应的 ControllerRevision:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
$ kubectl get controllerrevision -n kube-system -l name=fluentd-elasticsearch
NAME CONTROLLER REVISION AGE
fluentd-elasticsearch-64dc6799c9 daemonset.apps/fluentd-elasticsearch 2 1h
$ kubectl describe controllerrevision fluentd-elasticsearch-64dc6799c9 -n kube-system
Name: fluentd-elasticsearch-64dc6799c9
Namespace: kube-system
Labels: controller-revision-hash=2087235575
name=fluentd-elasticsearch
Annotations: deprecated.daemonset.template.generation=2
kubernetes.io/change-cause=kubectl set image ds/fluentd-elasticsearch fluentd-elasticsearch=k8s.gcr.io/fluentd-elasticsearch:v2.2.0 --record=true --namespace=kube-system
API Version: apps/v1
Data:
Spec:
Template:
$ Patch: replace
Metadata:
Creation Timestamp: <nil>
Labels:
Name: fluentd-elasticsearch
Spec:
Containers:
Image: k8s.gcr.io/fluentd-elasticsearch:v2.2.0
Image Pull Policy: IfNotPresent
Name: fluentd-elasticsearch
...
Revision: 2
Events: <none>
|
这个 ControllerRevision 对象,实际上是在 Data 字段保存了该版本对应的完整的 DaemonSet 的 API 对象。并且,在 Annotation 字段保存了创建这个对象所使用的 kubectl 命令。
可以尝试将这个 DaemonSet 回滚到 Revision=1 时的状态:
1
2
3
|
$ kubectl rollout undo daemonset fluentd-elasticsearch --to-revision=1 -n kube-system
daemonset.extensions/fluentd-elasticsearch rolled back
|
这个 kubectl rollout undo 操作,实际上相当于读取到了 Revision=1 的 ControllerRevision 对象保存的 Data 字段。而这个 Data 字段里保存的信息,就是 Revision=1 时这个 DaemonSet 的完整 API 对象。然后执行一次 kubectl apply -f “旧的 DaemonSet 对象”),从而把这个 DaemonSet“更新”到一个旧版本。
这也是为什么,在执行完这次回滚完成后,你会发现,DaemonSet 的 Revision 并不会从 Revision=2 退回到 1,而是会增加成 Revision=3。这是因为,一个新的 ControllerRevision 被创建了出来。
StatefulSet 也是直接控制 Pod 对象的,那么它是不是也在使用 ControllerRevision 进行版本管理呢?没错。在 Kubernetes 项目里,ControllerRevision 其实是一个通用的版本管理对象。这样,Kubernetes 项目就巧妙地避免了每种控制器都要维护一套冗余的代码和逻辑的问题